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Abstract. We have recently used unitarity and cross-unitarity properties of anZn symmetricR-
matrix to construct the transfer matrixt (u) for anN -site open spin chain. Here we give a fusion
procedure for such a chain, and we prove that the fused transfer matrixt̃ (u) is commutative
with the original transfer matrixt (u).

1. Introduction

It is well known that the integrability of two-dimensional lattice models is a consequence
of the Yang–Baxter equation [1, 2], which is usually written as

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v) (1)

where theR-matrix can be regarded as the Boltzmann weight for the vertex models in two-
dimensional statistical mechanics; as usual,R12(u), R13(u) andR23(u) act inCn ⊗Cn ⊗Cn,
with R12(u) = R(u) ⊗ 1, R23(u) = 1 ⊗ R(u), etc. It has been pointed out that the solution
of the Yang–Baxter equation can be related to some algebraic theories such as quantum
group and Sklyanin algebra. In the study of the Yang–Baxter equation the so-called fusion
procedure was developed to generate new integrable models corresponding to the group
invariant solutions of the Yang–Baxter equation from a known model.

Recently, much more attention has been paid to integrable systems with open boundary
conditions, which was initiated by Cherednik [3] and Sklyanin [4]. They introduced a
systematic approach to handle the finite-size systems which involve the so-called reflection
equation:

R12(u − v)K−
1 (u)R21(u + v)K−

2 (v) = K−
2 (v)R12(u + v)K−

1 (u)R21(u − v) (2)

R12(−u + v)K+
1 (u)t1R21(−u − v − 2η)K+

2 (v)t2

= K+
2 (v)t2R12(−u − v − 2η)K+

1 (u)t1R21(−u + v) (3)

K±
1 (u) andK±

2 (u) are boundary matrices acting inCn ⊗ 1 and 1⊗ Cn, respectively, which
determine uniquely the boundary terms in Hamiltonian, andη is a constant characterizing
the R-matrix. Using this approach, Sklyanin [4] solved the open spin-1

2 XXZ model with
general boundary conditions by generalizing the quantum inverse scattering method (QISM).
The transfer matrix with particular boundary conditions isUq [sl(2)] invariant [5]. TheR-
matrix is assumed to satisfy bothP - andT -symmetry as well as unitarity and cross-unitarity
properties. Because only a few models satisfy these properties, Mezincescu and Nepomechie
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[6] generalized Sklyanin’s approach of constructing integrable open chains to the case where
the R-matrix is onlyPT -invariant. So, all of the trigonometricR-matrices listed by Jimbo
[7] and Bazhanov [8] are of this type, and other models such as supersymmetric t–j models
[9] and the Perk–Schultz model [10] also satisfy these properties [11]. Correspondingly,
the reflection equations are extended to the modified reflection equations. The boundary
matricesK±(u) are solutions of the modified reflection equations.

However, for theZn × Zn Belavin model [12, 13], where theR-matrix does not have
the property ofPT -symmetry, the unitarity and cross-unitarity relations take a different
form from Sklyanin’s formalism and it’s generalization. We have recently shown [14] that
one can only use unitarity and cross-unitarity properties of aZn symmetricR-matrix to
construct the transfer matrix for an open chain; this transfer matrix forms a one-parameter
commutative family which ensures the integrability of the system under consideration. The
reflection equations take the following form:

R12(u − v)K−
1 (u)R21(u + v)K−

2 (v) = K−
2 (v)R12(u + v)K−

1 (u)R21(u − v) (4)

R12(−u + v)K+
1 (u)R21(−u − v − nw)K+

2 (v)

= K+
2 (v)R12(−u − v − nw)K+

1 (u)R21(−u + v). (5)

Obviously, there is an isomorphism betweenK+(u) andK−(u),

φ : K−(u) → K+(u) = K−(−u − 1
2nw). (6)

This relation means that given a solutionK−(u) of (4), one can also find a solutionK+(u)

of (5).
Mezincescu and Nepomechie have formulated a fusion procedure for boundaryK±

matrices corresponding to anR-matrix which isPT -invariant; these results can be used to
construct integrable open chains of higher spin [15, 16]. By using this approach, Yu-kui
Zhou has studied the fused six-vertex models with open boundary conditions. The central
charge and conformal weights of underlying conformal field theory are extracted from finite-
size corrections of the fused transfer matrices for low-lying excitations [17]. He has also
studied the functional relations of the transfer matrices of fusion hierachies for the eight-
vertex model with open boundary conditions [18]. For RSOS models, the fusion procedure
for the reflection matrixK± of the reflection equations has been presented in [19]. It is
known that theZn Belavin model reduces to Baxter’s eight-vertex model in the casen = 2.
By taking a limit of theZn symmetric BelavinR-matrix, one can obtain a trigonometric
R-matrix from which we can obtain the quantum groupslq(n) [20]. When n = 2, this
R-matrix is just a six-vertexR-matrix. In this paper, we will formulate a fusion procedure
for the Zn Belavin model with open boundary conditions. The fused transfer matrixt̃ (u)

can be proved to be commutative with the original transfer matrixt (u).
The outline of this paper is as follows. In section 2, we construct theZn Belavin vertex

R-matrix. In section 3, we carry out the fusion procedure for R matrices. In section 4,
we formulate the fusion procedure for reflectionK± matrices. Section 5 is devoted to the
fused transfer matrix with open boundary conditions. A proof that the fused transfer matrix
commutes with the original transfer matrix is given. Section 6 contains a brief summary
and some discussions.

2. Description of the model

First, we construct the matrix of vertex weights of the BelavinZn⊗Zn symmetric model. Let
g, h, Iα be n × n matrices with elementsgjk = ωjδjk, hjk = δj+1,k, Iα = I(α1,α2) = gα2hα1,
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I0 = I , wherei, j, k, α1, α2 ∈ Zn, ω = e2π i/n. DefineI
(j)
α = I ⊗ · · · ⊗ Iα ⊗ I ⊗ · · · ⊗ I, Iα

is at j th space.

Wα(u) ≡
θ

[ 1
2 + α1

n
1
2 + α2

n

]
(u + w

n
, τ )

θ

[ 1
2 + α1

n
1
2 + α2

n

]
(w

n
, τ )

= σα(u + w
n
)

σα(w
n
)

(7)

where

θ

[
a

b

]
(u, τ ) =

∑
m∈Z

exp{iπ(m + a)2τ + 2π i(m + a)(u + b)}. (8)

The Zn symmetric BelavinR-matrix takes the form

Rjk(u) = 1

n

∑
α∈Z2

n

Wα(u)I (j)
α (I−1

α )(k). (9)

This satisfies the Yang–Baxter equation (1). The elements of theR-matrix have been written
out explicitly by Richey and Tracy [13].

Rkl
ij (u) =


h(u)θ(i−j)(u + w)

(θ(i−k)(w)θ(k−j)(u)
for i + j = k + l mod n

0 otherwise

(10)

where

h(u) =
n−1∏
j=0

θ(j)(u)

/ n−1∏
j=1

θ(j)(0) θ(i)(u) =
[ 1

2 − i
n

1
2

]
(z, nτ).

TheR-matrix of theZn Belavin model satisfies the following initial condition, unitarity and
cross-unitarity properties:

R12(0) = P12 (11)

R12(u)R21(−u) = ρ(u) · id (12)

R
t1
12(u)R

t2
21(−u − nw) = ρ̃(u) · id (13)

where

ρ(u) = σ(u + w)σ(−u + w)

σ 2(w)

ρ̃(u) = σ(u)σ (−u − nw)

σ 2(w)
σ(u) ≡ σ0(u). (14)

P12 is the permutation operator.
Define

Wα(u, ξ) = σα(u + ξ)

σα(ξ)
(15)

K(u, ξ) = 1

n

∑
α∈Z2

n

W2α(u, ξ)ω2α1α2I2α (16)

where ξ is an arbitrary parameter. We have proved in [14, 21, 22] thatK−(u, ξ−) =
K(u, ξ−)K(0) is a solution of the reflection equation (4), and, correspondingly,K+(u, ξ+) =
K(−u − 1/2nw, ξ+)K(0) is a solution of the reflection equation (5).
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3. Review of the fusion procedure of theR-matrix

We describe first the fusion procedure of theZn symmetric Belavin vertex model. From
(10) we have [23, 24],

R12(−w) = A−P −
12, R12(w) = P +

12A
+ (17)

P ±
12 ≡ 1

2(1 ± P12). (18)

One should notice the order ofA± and P ±. We can prove easily that det(A±) 6= 0 as
τ → i∞ or w → 0. This leads to det(A±) 6= 0 for almost allw. Hence matricesA± are
invertible for almost allw. We refer the readers to [23] for the details of the matricesA±.
Note that these relations are essential for establishing the fusion procedure.

We define the fusedR-matrix as

R〈12〉3(u) = P +
12R13(u)R23(u + w)P +

12. (19)

By using the original Yang–Baxter equation (1) several times, we can prove that the fused
R-matrix satisfies the following generalized Yang–Baxter equation:

R〈12〉3(u − v)R〈12〉4(u)R34(v) = R34(v)R〈12〉4(u)R〈12〉3(u − v). (20)

Similiarly, we can also define another type of fusedR-matrix

R3〈12〉(u) = P +
12R32(u − w)R31(u)P +

12 (21)

satisfying a generalized Yang–Baxter equation. Actually we can construct a fusion hierarchy
of the Zn Belavin vertexR-matrix satisfying the generalized Yang–Baxter equations:

Rs1s2(u − v)Rs1s3(u)Rs2s3(v) = Rs2s3(v)Rs1s3(u)Rs1s2(u − v). (22)

It is convenient to introduce the following notations

R′
〈12〉3(u) = R〈21〉3(u − w) (23)

R′
3〈12〉(u) = R3〈21〉(u + w). (24)

Next, we will find the unitarity and cross-unitarity relations of the fusedR-matrices
which are essential in the rest of our paper. We list here two forms of the unitarity relations
of the fusedR-matrices:

R〈12〉3(u)R3〈12〉(−u) = ρ(u)ρ(u + w)P +
12 = f (u)P +

12 (25)

R′
3〈12〉(u)R′

〈12〉3(−u) = ρ(u)ρ(u + w)P +
21 = f (u)P +

21. (26)

which follows directly from the unitarity relation (12).
As for the cross-unitarity relations of the fusedR-matrices, we find:

R′t3
3〈12〉(−u − nw)R′t3

〈12〉3(u)

= 1

n4

∑
αβγ δ

Wα(−u − nw)Wδ(u) × Wβ(−u − nw + w)Wγ (u − w)

I−1
α Iδ ⊗ I−1

β Iγ ⊗ I t
β(I t

αI−1t
δ )I−1t

γ = ρ̃(u)ρ̃(u − w) · P +
12 = f̃ (u) · P +

12. (27)

Here we have used the cross-unitarity relation (13) of the originalR-matrix. We can
similiary find another form of cross-unitarity relation for the fusedR-matrix:

R
t1t2
〈12〉3(−u − nw)R

t1t2
3〈12〉(u) = f̃ (u) · P +

12. (28)
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4. Fusion procedure for the reflectionK-matrices

In this section, we will formulate a fusion procedure for reflectionK-matrices. As mentioned
above,K± matrices determine the non-trivial boundary terms in the Hamiltonian. So the
fusedK-matrices determine the boundary terms of the higher spin chains.

We will employ the same method used for theR-matrix for the reflectionK-matrix.
Taking v = u + w, with the help of equations (17), the reflection equation (4) becomes

A−P −
12K

−
1 (u)R21(2u + w)K−

2 (u + w) = K−
2 (u + w)R12(2u + w)K−

1 (u)A−P −
21. (29)

This leads to the relation

P −
12K

−
1 (u)R21(2u + w)K−

2 (u + w)P +
21 = 0. (30)

Hence, we can define the fusedK− matrix as

K−
〈12〉(u) = P +

12K
−
1 (u)R21(2u + w)K−

2 (u + w)P +
21. (31)

One can prove that the fused reflectionK− matrix satisfies the following generalized
reflection equation:

R3〈12〉(u − v)K−
3 (u)R〈12〉3(u + v)K−

〈12〉(v) = K−
〈12〉(v)R′

3〈12〉(u + v)K−
3 (u)R′〈12〉3(u − v)

(32)

as follows from the Yang–Baxter equation (1) and the reflection equation (4). Similiarly,
following the same strategy employed forK−, we can also find the fusion procedure for
K+. Settingv = u − w, the fusedK+ matrix takes the form

K+
〈12〉(u) = P +

12K
+
1 (u)R21(−2u + w − nw)K+

2 (u − w)P +
12. (33)

By using the Yang–Baxter equation (1) and reflection equation (5), we are led to the
following generalized reflection equation for the fused reflectionK+ matrix:

R3〈12〉(−u + w)K+
3 (u)R〈12〉3(−u − v − nw)K+

〈12〉
= K+

〈12〉(v)R′
3〈12〉(−u − v − nw)K+

3 (u)R′〈12〉3(−u + v). (34)

Comparing the two generalized reflection equations (32) and (34), one can also find an
isomorphism between fusedK+ andK− matrices. This means that equation (6) still holds
for fusedK-matrices.

Here, we will present another form of the generalized reflection equation (32) for the
fusedK− matrix:

R′
3〈12〉(u − v)K−

3 (u)R′〈12〉3(u + v)K〈21〉(v − w)

= K−
〈21〉(v − w)R3〈12〉(u + v)K−

3 (u)R〈12〉3(u − v). (35)

This can be obtained from equation (32) by using the transformation:space 1↔ space 2;
v → v − w.

5. The fused transfer matrix with open boundary conditions

It is well known that in the framework of the quantum inverse scattering method [25] the
Yang–Baxter equation takes the form

R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v) (36)

whereT (u) is the standard row-to-row monodromy matrix. Using the same fusion procedure
for the R-matrix, one can obtain the fusion procedure for the monodromy matrix

T〈12〉(u) = P +
12T1(u)T2(u + w)P +

12 (37)
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satisfying the relation

R3〈12〉(u − v)T2(u)T〈12〉(v) = T〈12〉(v)T3(u)R3〈12〉(u − v). (38)

DenotingT −1(−u) by T̂ (u) as used by Mezincescu and Nepomechie [15], we can transform
the Yang–Baxter equation:

R12(v − u)T̂2(v)T̂1(u) = T̂1(u)T̂2(v)R12(v − u). (39)

Repeating the same fusion procedure, we find

T̂〈12〉(u) = P +
12T̂2(u − w)T̂1(u)P +

12 (40)

which satisfies the relation

R〈12〉3(v − u)T̂3(v)T̂〈12〉(u) = T̂〈12〉(u)T̂3(v)R〈12〉3(v − u). (41)

In the case of open boundary conditions, we define the double-row monodromy matrix
as

T (u) = T (u)K−(u)T̂ (u) (42)

satisfying the same reflection equation as that whichK− satisfied:

R12(u − v)T1(u)R21(u + v)T2(v) = T2(v)R12(u + v)T1(u)R21(u − v). (43)

So we can similiarly find a fusion procedure for the double-row monodromy matrix:

T〈12〉(u) = P +
12T1(u)R21(2u + w)T2(u + w)P +

21. (44)

One can prove that the fused double-row monodromy matrix satisfies the same relations as
that of K−

〈12〉(u):

T〈21〉(v − w)R3〈12〉(u + v)T3(u)R〈12〉3(u − v)

= R′
3〈12〉(u − v)T3(u)R′〈12〉3(u + v)T〈21〉−(v − w). (45)

Here, we will introduce another definition for the fused double-row monodromy matrix:

T〈12〉(u) = T〈12〉(u)K−
〈12〉(u)T̂〈21〉(u + w). (46)

The two definitions (44) and (46) can be proved to be equivalent to each other:

T〈12〉(u) = T〈12〉(u)K−
〈12〉(u)T̂〈21〉(u + w)

= T1(u)K−
1 (u)T2(u + w)R21(2u + w)T̂1(u)K−

2 (u + w)T̂1(u)T̂2(u + w)P +
21

= T1(u)K−
1 (u)T̂1(u)R21(2u + w)T2(u + w)K−

2 (u + w)T̂2(u + w)P +
21

= P +
12T (u)R21(2u + w)T2(u + w)P +

21. (47)

We know that the original transfer matrix with open boundary conditions is defined as

t (u) = trK+(u)T (u). (48)

By using the unitarity and cross-unitarity properties of theZn symmetricR-matrix, we have
proved that this transfer matrix constitutes a one-parameter commutative family. For the
case of fusion, we define the fused transfer matrix with open boundary conditions as

t̃ (u) = tr12 K+
〈12〉(u)T〈21〉(u − w). (49)

Next, we will prove that the fused transfer matrix commutes with the original transfer matrix
t (u), which means that̃t(u) also forms a commuting family.
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We first insert the unitarity and cross-unitarity relations (26) and (27) into the following
relations:

t (u)t̃(v) = tr123K
+t3
3 (u)K+

〈12〉(v)T t3
3 (u)T〈21〉(v)

= 1

f̃ (u+)
tr123K

+t3
3 (u)K+

〈12〉(v)

×{R′t3
3〈12〉(−u+ − nw)R′t3

〈12〉3(u+)}T t3
3 (u)T〈21〉(v − w)

= 1

f̃ (u+)f (u−)
tr123{K+t3

3 (u)R′t3
3〈12〉(−u+ − nw)K

+t1t2
〈12〉 (v)}

×{T3(u)R′〈12〉3(u+)T〈21〉(v − w)}t1t2t3{R′t1t2t3
3〈12〉(u−)R′t1t2t3

〈12〉3(−u−)}

= 1

f̃ (u+)f (u−)
tr123{R′〈12〉3(−u−)t1t2t3K

+t3
3 (u)R′t3

3〈12〉(−u+ − nw)

×K
+t1t2
〈12〉 (v)}t1t2t3{R′

3〈12〉(u−)T3(u)R′〈12〉3(u+)T〈21〉(v − w)}.
Here notationsu± = u ± v have been used. Then, applying the transpositiont1t2t3 and
using the reflection equations (34) and (35):

· · · = 1

f̃ (u+)f (u−)
tr123{R3〈12〉(−u−)K+

3 (u)R〈12〉3(−u+ − nw)K+
〈12〉(v)}

×{T〈21〉(v − w)R3〈12〉(u+)T3(u)R〈12〉3(u−)}
= 1

f̃ (u+)
tr123{K+

3 (u)K
+t1t2
〈12〉 (v)R

t1t2
〈12〉3(−u+ − nw)}

×{Rt1t2
3〈12〉(u+)T t1t2

〈21〉(v − w)T3(u)}
= tr12 K

+t1t2
〈12〉 (v)T t1t2

〈21〉(v − w) tr3 K+
3 (u)T3(u)

= t̃ (v)t (u). (50)

Here the unitarity relation (25) and the cross-unitarity relation (28) have been applied. Thus
we have proved that the fused transfer matrix with open boundary conditions commutes
with the original transfer matrix with open boundary conditions.

6. Summary and discussions

In conclusion, we have formulated a fusion procedure for theZn Belavin vertexR-matrix
model with open boundary conditions. We have obtained the fused reflectionK-matrices,
double-row monodromy matrix and transfer matrix with open boundary conditions. We
have also proved that the fused transfer matrix is commutative with the original transfer
matrix so that the fused transfer matrix also constitutes a commuting family.

In this paper, we have given a fusion procedure for theZn Belavin model. Following
the same method, one can generalize our formalism to higher levels. Defining the projector

Y+
p = 1

p!
(P1,p + · · · + Pp−1,p + I ) · · · (P12 + I ) (51)

the fusedR-matrix can be given by [16]

R(p,q)(u) = Y+
q (R(p)q(u − qw + w) · · ·R(p)2(u − w)R(p)1(u))Y+

q

R(p)j (u) = Y+
p R1j (u)R2j (u + w) · · ·Rpj (u + pw − w)Y+

p . (52)
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Following the method presented in this paper, we assume the levelq fusedK− matrix takes
the form

K−
(q)(u) = Y+

q [K−
1 (u)][R21(2u + w)K−

2 (u + w)] · · ·
· · · [Rq,1(2u + (q − 1)w)Rq−1,1(2u + (q − 2)w) · · ·
· · ·R21(2u + w)K−

q (u + (q − 1)w)]Y+
q . (53)

Similarly, the levelq fusedK+ matrix could be defined as

K+
(q)(u) = Y+

q [K+
1 (u)][R21(−2u + w − nw)K+

2 (u − w)] · · ·
· · · [Rq,1(−2u + (q − 1)w − nw) · · ·
· · ·R21(−2u + w − nw)K+

q (u − (q − 1)w)]Y+
q (54)

which satisfies the fused reflection equations.
Similar to the fusion of theR-matrix, the high-level fused row-to-row monodromy

matricesT (u) and T̂ (u) are defined as

T(p,q)(u) = Y+
q T1(p)(u)T2(p)(u + w) · · · Tq(p)(u + (q − 1)w)Y+

q

T̂p,q(u) = Y+
q T̂1(p)(u − qw)T̂2(p)(u − (q − 1)w) · · · T̂q(p)(u − w)Y+

q (55)

where

Tj(p)(u) = R
(1,p)

j1 (u)R
(1,p)

j2 (u) · · ·R(1,p)

jN (u)

T̂j (p)(u) = R
(1,p)

jN (−u)−1 · · ·R(1,p)

j1 (−u)−1. (56)

Define the generalized fused transfer matrix with open boundary conditions as

t (p,q)(u) = tr K+
(q)(u)T(p,q)(u)K−

(q)(u)T̂(p,q)(u). (57)

The fused Yang–Baxter equation and the fused reflection equations guarantee the following
commuting families:

[t (p,q)(u), t (p,b)(v)] = 0. (58)

It is easy to see thatt (1,2)(u) = t̃ (u), t (1,1)(u) = t (u) which have already been defined. So,
we have constructed a fusion hierarchy and one can extract the following functional Bethe
ansatz equations,

t (p,q)(u)t(p,q)(u − w) = t (p,q+1)(u)t(p,q−1)(u − w) + t (p+1,q)(u)t(p−1,q)(u − w) (59)

satisfying thesu(n) fusion hierarchy. These functional equations can be converted into the
so-called thermodynamic Bethe-ansatz-like equations [26] and can be solved analytically for
finite-size scaling spectra, central charges and conformal weights [27]. For the eight-vertex
model, which has been studied in [18], for theZn Belavin model, this needs further studies.

We know that an important development in exactly solvable models with open boundary
conditions is the boundary cross-unitarity relation proprosed by Ghoshal and Zamolodchikov
[28, 29]. The boundary cross-unitarity relations have been obtained for six-vertex, eight-
vertex and O(n) sigma models; for the generalR-matrix with n > 2, the cross-unitarity
relations have not been obtained before. By using the fusion procedure for theZn Belavin
model similar to the method in this paper, the boundary cross-unitarity relation has recently
been obtained [30] and it takes the form

[K−(u)∗]kj = R(2u + nw)
lj

kl′K
−(−u − nw)l

′
l (60)

where a factor has been omitted,

K−(u)∗ = C−1Y−
(n−1)K

−
n (u + (n − 1)w)Rn−1,n(2u + (2n − 3)w) · · ·

· · ·K−
2 (u + w)Y−

(n−1)C (61)
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where C is a matrix related to theR-matrix. We know that by using the boundary
unitarity and boundary cross-unitarity relations one could obtain the boundary free energy
and surface critical exponents etc which are of interest to physicists. For the eight-vertex
model, this has already be studied by Batcheloret al [31]. It is also important to obtain
the difference equations for the correlation functions of theZn Belavin model with open
boundary conditions following the method in [32].

For theZn Belavin model with periodic boundary conditions, Hasegawa has given a
Macdonald-type operator which is equivalent to Ruijsenaars’ operators by using the fusion
procedure [33]. For open boundary conditions, using the commuting families obtained in
this paper, one could also find analogous Macdonald-type operators.
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